
7 

CHAPTER 2 
THEORITICAL FOUNDATION 

In this section, the relevant theories is summarized and presented comprehensively and in 

accordance with the problem. The theories which support the solution of the problem can be 

referenced from the latest research in the field or from textbook and other references. 

2.1 Performance Management System 

According to Susan M. Heathfield [5], performance management is the process of 

creating a work environment or setting in which people are enabled to perform to the 

best of their abilities. Performance management is a whole work system as needed 

that will occur as soon as a job is defined. It ends when an employee leaves your 

organization. Furthermore, Heathfield explains that performance management should 

include the following actions: 

• Develop clear job descriptions. 

• Select appropriate people with an appropriate selection process. 

• Negotiate requirements and accomplishment-based performance 

standards, outcomes, and measures. 

• Provide effective orientation, education, and training. 

• Provide on-going coaching and feedback. 

• Conduct quarterly performance development discussions. 

• Design effective compensation and recognition systems that reward 

people for their contributions. 



8 
 

  

• Provide promotional/career development opportunities for staff. 

• Assist with exit interviews to understand WHY valued employees leave 

the organization 

2.2 Balanced Scorecard 

According to Kaplan and Nortron [2], the balanced scorecard is a strategic planning 

and management system that is used extensively in business and industry, 

government, and nonprofit organizations worldwide to align business activities to 

the vision and strategy of the organization, improve internal and external 

communications, and monitor organization performance against strategic goals. Old 

balance scorecard only retains from financial perspective which is past record and 

directly involved to revenue of the organization. 

The following figure is proposed by Kaplan and Nortron; the balanced scorecard 

suggests that we view the organization from four perspectives, and to develop 

metrics, collect data and analyze it relative to each of these perspectives: 

 



9 
 

  

 

Figure 1: Balance scorecard 

1. The learning and growth perspective. 

This perspective includes employee training and corporate cultural attitudes 

related to both individual and corporate self-improvement. 

2. The business process perspective. 

Metrics based on this perspective allow the managers to know how well their 

business is running, and whether its products and services conform to customer 

requirements (the mission). 

3. The customer perspective. 

Customer focus and satisfaction will be important factors for business. The 

matrices will be based in terms of kinds of customers and the kinds of processes 

for which we are providing a product or service to those customer groups 

4. The financial perspective. 



10 
 

  

Historical data of finance will always take into account for managers for 

performance. The point is that the current emphasis on financials leads to the 

"unbalanced" situation with regard to other perspectives. 

2.3 KPI Table 

According to F. John Reh from About.com [1], Key Performance Indicators are 

quantifiable measurements, agreed to beforehand, that reflect the critical success 

factors of an organization. KPI for any organization is different depending on their 

focus. A Key Performance Indicator for a social service organization might be 

number of clients assisted during the year. In KPI system, each performance for 

each staff must be able to be measured. In sales, for instance, we need to address the 

performance by units sold or dollars gained per month.  

Key performance indicators must reflect the organizational goals. For instance, a 

company that has one of its goals "to be the most profitable company in our 

industry" will have key performance indicators that measure profit and related fiscal 

measures. Furthermore, KPI need to be quantifiable which means that any value 

must be able to be defined and measured. For example, “generate more repeat 

customers” will not work since without some way to distinguish between new and 

repeat customers. Also, KPI must be the key to organizational success. There are 

various factors that affects an organization and only few are essential for the 

organization to reach its goal. 



11 
 

  

2.4 Database 

According to Connolly and Begg[6], database is shared collection of logically 

related data, and a description of this data, signed to meet the information needs of 

an organization. The database is a single, possibly large repository of data that can 

be used simultaneously by many departments and users. Instead of disconnected 

files with redundant data, all data items are integrated with a minimum amount of 

duplication. The database is no longer owned by one department but is shared 

corporate resource. The database hold not only the organization’s operational but 

also a description of this data. For this reason, a database is also defined as a self-

describing collection of integrated records. The description of the data is known as 

the system catalog or data dictionary. Because all the database data are logically 

related, it consists of 3 main elements as information providers which are: 

1. Entity (referred as a distinct object like name, place, things, concept used 

in organization that is represented in database). 

2. Entity relationship (The association between one entity to another or more 

than one entity). 

3. Attributes (An information or property of some aspect of entity that 

people wish to record). 

2.4.1 Structured Query Language 

Structured Query Language (SQL) is a standard of 4th generation database computer 

language (4GL) designed for management and retrieval of database in DBMS 

(Database management system software). SQL model was firstly introduced by Dr. 

F.E Codd in his research paper “A Relational Model of Data for Large Shared Data 



12 
 

  

Banks” in 1970 which later on was developed by Donald D. Chamberlin and 

Raymond F. Boyce from IBM Company with the name of SEQUEL (Structured 

English Query Language) and later on changed into SQL [9]. There are four types 

of standard syntaxes need to be followed for SQL programming language: 

1. Queries 

This is the most commonly used SQL syntax which performs a declarative of 

SELECT statement to retrieve the data (columns and rows) in database. 

While often considered as part of Data Manipulation Language (DML), the 

standard query is considered separate from DML because it has no persistent 

effects on the data stored in a database. With queries, user can specify which 

field or column of table in database need to be retrieved or using a “wildcard” 

(*) asterisk to retrieve all columns inside tables. It also allows user to 

retrieve and filter the result set of database in any manners depend on the 

declaration of the query in which make the query is the most complex one. 

Numerical process of column data can also be performed like SUM, 

COUNT, MAX, MIN, or AVG if the data is numeric. Logic of data 

retrieval can be filtered with additional clauses of optional query statement 

after SELECT which are: 

− FROM 

This clause determine from which table the data retrieval will take 

place. This clause optionally use JOIN clause to join the same 

related table based on user-specific criteria. 

− GROUP BY 



13 
 

  

This clause allows user to perform aggregated function (eliminate 

duplicated rows in result set) and combine or group row with the 

same related value into elements of a smaller set of rows. 

− WHERE 

This clause allows user to add comparison predicate or additional 

logic to specific column use to restrict or filter the result set 

returned by query. 

− HAVING 

Similar with WHERE clause where this clause allows user to add 

user specified conditional logic to filter the result set, but it is done 

after the GROUP BY is applied to result set. 

− ORDER BY 

This clause function is to sort or rearrange the data of user specified 

column in result set and the order type that they should be sort 

either descending (DESC) or ascending (ASC). 

 

2. DDL (Data Definition Language) 

SQL DDL is a SQL process to construct and control of new table with its 

associated elements including rows, columns, tables, indexes, and database 

specifics such as file locations. The syntaxes in SQL DDL are CREATE, 

ALTER, RENAME, TRUNCATE, and DROP statement. 

3. DML (Data Manipulation Language) 



14 
 

  

SQL DML takes parts to control the insertion, updates and removal of table 

data inside database. The SQL DML syntaxes are INSERT, UPDATE and 

DELETE. The use of DML only has a persistence effect to the data inside 

table, not the table’s information. 

4. DCL (Data Control Language) 

The last category of SQL syntax is DCL known as Data Control Language 

whose purpose is controlling the data authorization specified by user. With 

DCL, user are able to control the user permission and restriction of certain 

access or modification of data inside database. It involves two main syntaxes,  

2.4.2 Database Management System 

 

Figure 2: Database Management System Architecture 

Database Management System (DBMS) is a software that enables users to define, 

create, maintain, and control access to the database. The DBMS is the software that 

interacts with the users’ application programs and the database. DBMS is also 

designed as a set of complex computer application that controls the organization, 

storage, management and retrieval of data inside database. As defined by Dr. F.E 



15 
 

  

Codd (1982), the full-scale DBMS should have the capability to provide services to 

handle the querying, DDL (Data Definition Languange), DML (Data Modification 

Language), and DCL (Data Control Language) processes combined with the 

capability of database concurrency control (to ensure that database is updated 

correctly when multiple user updating database concurrently), integrity system 

(maintain the consistency of stored data) and database backup and restore if the case 

of data conflict. 

2.4.3 MySql 

It is one of well known open-source, multithreaded and multi-users DBMS 

(Database Management System) application developed by MySQL AB – the 

subdivision of Sun Microsystems acquired in February 2008 written under C and 

C++ programming language and designed for cross-platform operating system. The 

first initial version was released on May 1995 and the last update final version of 

5.0 released on October 2005. The project’s source code is available under terms of 

the GNU General Public License, as well as under a variety of proprietary 

agreements (EULA).  

2.4.4 Database Normalization 

Normalization is a database design technique which begins by examining the 

relationships (called functional dependencies) between attributes. By using a series 

of tests (described as normal forms), optimal grouping of attributes will make a 

suitable relations that support data requirements. 



16 
 

  

According to Ian Gilfillan [7], a table that contains one or more repeating groups is 

called Unnormalized form (UNF). A first normal form table should have the 

following requirements; there are no repeating groups, all the key attributes are 

defined and all attributes are dependent on primary key. The following table is in 

UNF: 

 
Project 
number 

Project name Employee 
number 

Employee 
name 

Rate 
category 

Hourly 
rate 

1023 Madagascar 
travel site 

11 Vincent 
Radebe 

A $60 

  12 Pauline James B $50 
  16 Charles 

Ramoraz 
C $40 

1056 Online estate 
agency 

11 Vincent 
Radebe 

A $60 

  17 Monique 
Williams 

B $50 

 

The data structure would be: 

Project number 
Project name 
1-n Employee numbers (1-n indicates that there are many occurrences of this field - 
it is a repeating group) 
1-n Employee names 
1-n Rate categories 
1-n Hourly rates 
 

The 1NF solution is implemented and the table would have primary keys as 

following: 

Project 
number 

Project name Employee 
number 

Employee 
name 

Rate 
category 

Hourly 
rate 

1023 Madagascar 
travel site 

11 Vincent 
Radebe 

A $60 

1023 Madagascar 
travel site 

12 Pauline James B $50 

1023 Madagascar 16 Charles C $40 



17 
 

  

travel site Ramoraz 
1056 Online estate 

agency 
11 Vincent 

Radebe 
A $60 

1056 Online estate 
agency 

17 Monique 
Williams 

B $50 

 
 

 

Employee project table 
Project number - primary key 
Project name 
Employee number - primary key 
Employee name 
Rate category 
Hourly rate 
 
A table in second normal form (2NF) should have what it is in first normal form and 

includes no partial dependencies (where an attribute is dependent on only a part of a 

primary key). Employee project table thus becomes: 

Employee project table 
Project number - primary key 
Employee number - primary key 
 
Employee table 
Employee number - primary key 
Employee name 
Rate category 
Hourly rate 
 
Project table 
Project number - primary key 
Project name 
 
The third normal form (3NF) table should have what it is on second normal form 

and contains no transitive dependencies (where a non-key attribute is dependent on 

another non-key attribute). As a result, the following tables are created: 

 
 



18 
 

  

Employee project table 
Project number - primary key 
Employee number - primary key 
 
Employee table 
Employee number - primary key 
Employee name 
Rate Category 
 
Rate table 
Rate category - primary key 
Hourly rate 
 
Project table 
Project number - primary key 
Project name 
 
Normalization however is not necessary to all database structure. Still, all database 

designers need good old common sense whether it is normalized or not. Most tables 

are actually already on 3NF and therefore normalize it will give more cost and slow 

process down. 

2.5 PHP 

PHP is a widely-used open source general-purpose scripting language that is 

especially suited for web development and can be embedded into HTML. PHP 

stands for PHP: Hypertext Pre-processor a recursive acronym which originally 

called Personal Home Page Tools known as PHP Construction Kit created by 

Rasmus Lerdorf, a software engineer as well as Apache team member in late 1994 

[11]. The first development of PHP began as a set of Common Gateway Interface 

(CGI) binaries written in the C programming language used by Rasmus for his 

personal tools to maintain personal homepage before he released it for public. PHP 

has run through several improvements and expansions to make it more global into 

several versions by PHP Teams and currently the PHP has reached version 5.3.0 on 



19 
 

  

July 2009. PHP has become one of the most famous influential web programming 

languages used by many developers to build their website because of its free to use, 

portability and easy for maintenance which make it as the third most popular 

computer programming language, ranking behind Java and C[12].  

 

 

Figure 3: Top Programming language index. 

 

2.5.1 PHP Advantages 

The advantages of using PHP are: 

• PHP code is inserted directly into the HTML that makes up a website. When 

a visitor comes to the website. The code is executed. Because PHP is a 

server side technology, the user does not need any special browser or plug-

ins to see the PHP in action 

• The beauty of PHP lies in its simplicity. It is easy to understand and learn, 

especially for those with backgrounds in programming such as C, javascript 

and HTML. The language is similar to C and Perl and PHP also runs on just 

about every platform including most UNIX, Macs and Windows version. 

• PHP does not use a lot of the system’s resources so it runs fast and does not 

tend to slow other processes down. PHP is fairly stable and open source and 



20 
 

  

the PHP community also works together to fix any bugs. The community 

offers technical support and continuously updates the code further expanding 

PHP’s capabilities. 

• PHP offers many levels of security to prevent malicious attacks. These 

security levels can be adjusted in the .ini file. 

• PHP uses a modular system of extensions to interface with a variety of 

libraries such as graphics, XML, encryption, etc. Programmers can extend 

PHP by writing their own extensions and compiling them into the executable 

or they can create their own executable and load it using PHP’s dynamic 

loading mechanism. 

• In addition, PHP has many server interfaces, database interfaces and other 

modules available. 

• The main PHP source repository is loaded with modules and interfaces that 

users have written and contributed. There you can find modules for flash 

movies, PDF files, calendars, and more. 

• PHP community offers sharing PHP project since PHP is open source. If you 

are looking for a particular script, chances are another user has already 

created something similar. 

2.5.2 PHP Data Processing 

PHP code is executed on the server instead on the client side like Java-Script (JSP) 

does. When a user tries to open a php page using a web browser, the user’s browser 

sends out a request to the web server. The web server then calls the PHP script on 

that page. The PHP module executes the script, which then sends out the result in 



21 
 

  

the form of HTML back to your browser, which you see on the screen. PHP hides 

all complex stuff such as processing, math calculation, file operation, etc and only 

gives the user the part that it needed to show such as content and pictures. 

The following is the PHP process diagram: 

 

Figure 4:  PHP Data Processing 

 

2.6 UML Model Diagram 

The Unified Modeling Language (UML) is a standard language used for modeling 

software application needs and creating software blueprints. It is a language for 

visualizing, specifying, constructing, and documenting the artifacts of a software-

intensive system [23]. In practice, generally UML applies graphical notations to 

express the design of software projects. By applying UML, project teams could 

communicate, explore potential designs, and validate the architectural design of the 

software with less difficulty. 

2.6.1 Use Case Diagram 

Use case diagram is a diagram that depicts the interactions between the system and 

external systems and users. In other words, it graphically describes who will use the 

system and in that ways the user expects to interact with the system. A use case 



22 
 

  

diagram captures the functional aspects of a system and normally domain experts 

and business analysts should be involved in writing use cases for a given system. A 

use case diagram is quite simple in nature and depicts two types of elements: one 

representing the business roles and the other representing the business processes. 

 

Actors An actor portrays any entity (or entities) that performs certain 

roles in a given system. The different roles the actor represents 

are the actual business roles of users in a given system. An actor 

in a use case diagram interacts with a use case. 

An actor is shown as a stick figure in a use case diagram depicted "outside" the 

system boundary, as shown below. 

 

To identify an actor, search in the problem statement for business terms that 

portray roles in the system. For example, in the statement "patients visit the 

doctor in the clinic for medical tests," "doctor" and "patients" are the business 

roles and can be easily identified as actors in the system. 

Use case A use case in a use case diagram is a visual representation of a 

distinct business functionality in a system. To choose a business 

process as a likely candidate for modeling as a use case, we need 

to ensure that the business process is discrete in nature. As the 

first step in identifying use cases, we should list the discrete 



23 
 

  

business functions in your problem statement. Each of these 

business functions can be classified as a potential use case. A use 

case is shown as an ellipse in a use case diagram. 

 

It shows two uses cases: "Make appointment" and "Perform medical tests" in 

the use case diagram of a clinic system. Discovering such implicit use cases is 

possible only with a thorough understanding of all the business processes of the 

system through discussions with potential users of the system and relevant 

domain knowledge. 

 

System 

boundary 

A system boundary defines the scope of what a system will be. A 

system cannot have infinite functionality. So, it follows that use 

cases also need to have definitive limits defined. A system 

boundary of a use case diagram defines the limits of the system. 

The system boundary is shown as a rectangle spanning all the use 

cases in the system. 

 

 



24 
 

  

It shows the system boundary of the clinic application. The use cases of this 

system are enclosed in a rectangle. Note that the actors in the system are outside 

the system boundary. 

 

 
Relationships in Use Cases.  

Include When a use case is depicted as using the 

functionality of another use case in a diagram, this 

relationship between the use cases is named as an 

include relationship. 

 

For example, the functionality defined by the "Validate patient records" use 

case is contained within the "Make appointment" use case. Hence, whenever the 

"Make appointment" use case executes, the business steps defined in the 

"Validate patient records" use case are also executed. 

Extend In an extend relationship between two use cases, 

the child use case adds to the existing functionality 

and characteristics of the parent use case. 

 

It shows an example of an extend relationship between the "Perform medical 



25 
 

  

tests" (parent) and "Perform Pathological Tests" (child) use cases. The "Perform 

Pathological Tests" use case enhances the functionality of the "Perform medical 

tests" use case. Essentially, the "Perform Pathological Tests" use case is a 

specialized version of the generic "Perform medical tests" use case. 

 

Generalizations A generalization relationship is also a parent-child 

relationship between use cases. The child use case 

in the generalization relationship has the 

underlying business process meaning, but is an 

enhancement of the parent use case.  

 

 

The "Store patient records (paper file)" (parent) use case is depicted as a 

generalized version of the "Store patient records (computerized file)" (child) use 

case. Defining a generalization relationship between the two implies that you 

can replace any occurrence of the "Store patient records (paper file)" use case in 

the business flow of your system with the "Store patient records (computerized 

file)" use case without impacting any business flow. This would mean that in 

future you might choose to store patient records in a computerized file instead 



26 
 

  

of as paper documents without impacting other business actions. 

 

A use case specification document should cover the following areas  

 

Actors List the actors that interact and participate in this use 

case. 

Pre-conditions Pre-conditions that need to be satisfied for the use case 

to perform. 

Post-conditions Define the different states in which you expect the 

system to be in, after the use case executes. 

Basic Flow List the basic events that will occur when this use case 

is executed. Include all the primary activities that the 

use case will perform.. This description of actions and 

responses are the functional requirements. These will 

form the basis for writing the test case scenarios for the 

system. 

Alternative flows Any subsidiary events that can occur in the use case 

should be listed separately. Each such event should be 

completed in itself to be listed as an alternative flow. A 

use case can have as many alternative flows as 

required.  



27 
 

  

Special 

Requirements 

Business rules for the basic and alternative flows 

should be listed as special requirements in the use case 

narration. These business rules will also be used for 

writing test cases. Both success and failure scenarios 

should be described here. 

Use case 

relationships 

For complex systems, it is recommended to document 

the relationships between use cases. If this use case 

extends from other use cases or includes the 

functionality of other use cases, these relationships 

should be listed here. Listing the relationships between 

use cases also provides a mechanism for traceability.  

 

 
 

 

Figure 5: The use case diagram example for the Courseware Management System  

 



28 
 

  

2.6.2 Context Diagram 

The context diagrams describe the way the computer system interacts with the 

environment, mainly focus on the external entities. Context diagram explains the 

data flow from the external entities which describe the whole big system. This 

diagram is the highest level among all the data flow diagrams which only contain a 

process. This diagram does not have data store notations and looks very simple. 

 

Figure 6: Context Diagram Sample 

2.6.3 Entity Relationship Diagram 

Object-based data model use concepts as entities, attributes, and relationships. This 

model describes data at the view and conceptual level including with its constraints. 

One of well known object-based logical model concept is the entity relationship 

diagram (ERD). These are the elements that build the ERD: 

• Entity 

Entity is an object which is the place where the data is stored. 

• Attributes 

Attributes defines the characteristic and properties of an entity. 

• Relationships 



29 
 

  

Relationships show the way the entity shares their information in the 

database structure. 

• Links 

Links connect the entities, attributes, and relationships. 

There are 2 kinds of relationships in an entity relationship diagram 

 

Figure 7: ERD Sample 

2.6.4 Data Flow Diagram 

A data flow diagram (DFD) is a process model used to depict the flow of data 

through a system and the work or processing performed by the system  

The guidelines for constructing DFDs include the following: 

• Choose meaningful names for processes, flows, stores, and terminators. 

• Number the processes. 

• Redraw the DFD as many times as necessary for esthetics. 



30 
 

  

• Avoid overly complex DFDs. 

• Make sure the DFD is internally consistent and consistent with any 

associated DFDs. 

 

 

Figure 8: Data flow diagram example. 

 

Elements of a DFD: 

Process entity 

 

The Process entity identifies a process taking 

place, it must have at least one input and output. 

Each process has the following: 

A Number 

A Name (verb phrase) 

A Description 

At least one input 

At least one output 

Data flow entity 

 

The Data Flow entity identifies the flow of data 

between processes, data stores & external 

entities. Each data flow has the following: 

A Name (Noun) 

A Description 



31 
 

  

One or more connections to a process. 

Data Store entity The Data Store entity identifies stores of data, 

both manual and electronic. Electronic or digital 

stores are identified by the letter D, and manual 

filing systems by the letter M. Each data store 

has the following: 

A Number 

A Name 

A Description 

One or more input data flows. 

One or more output data flows. 

External entity 

 

The External Entity identifies external entities 

which interacts with the system, usually clients 

but can be within the same organization. Each 

external entity has the following: 

A Name (Noun) 

A Description 

The Feedback and 

Control data 

 

The Feedback and Control data identifies a 

special purpose. Only the first four elements are 

needed to create a data flow diagram (DFD). 

 

 

 



32 
 

  

 

DFD Levels 

• Context Level 

This level shows the overall context of the system and it's operating environment 

and shows the whole system as just one process.  

 

Figure 9: A context level DFD created using Select SSADM. 

 

• Level 0 

This level shows all processes at the first level of numbering, data stores, external 

entities and the data flows between them. The purpose of this level is to show the 

major high level processes of the system and their interrelation. A process model 

will have one, and only one, level 0 diagram. A level 0 diagram must be balanced 

with its parent context level diagram, i.e. there must be the same external entities 

and the same data flows, these can be broken down to more detail in the level 0, e.g. 

the "enquiry" data flow could be spilt into "enquiry request" and "enquiry results" 

and still be valid. 

 



33 
 

  

Figure 10: A Level 0 DFD for the same system. 

 

• Level 1 

This level is a decomposition of a process shown in a level 0 diagram, as such there 

should be a level 1 diagram for each and every process shown in a level 0 diagram. 

In this example processes 1.1, 1.2 & 1.3 are all children of process 1, together they 

wholly and completely describe process 1, and combined must perform the full 

capacity of this parent process. As before, a level 1 diagram must be balanced with 

its parent level 0 diagram.  

 

Figure 11: Level 1 DFD showing the "Process Enquiry" process for the same system. 

 

 

2.7 Software Testing 

According to Glenford J. Myers[16], software testing is a process, or a series of 

processes, designed to make sure computer code does what it was designed to do 

and that it does not do anything unintended. To consider the economics of software 

testing, it is impractical often impossible to test a program to find all of its errors. 

Therefore, strategies should be developed with the purpose of finding the most 

errors with given time and effort. A number of software testing strategies provide 



34 
 

  

software developer a template for testing with the following general characteristics 

[18]: 

1. To perform effective testing, a software team should conduct effective 

formal technical reviews. By doing this, many errors will be eliminated 

before testing commences. 

2. Testing begins at the component level and works “outward” toward the 

integration of the entire computer-based system. 

3. Different testing techniques are appropriate at different points in time. 

4. Testing is conducted by the developer of the software and (for large 

projects) an independent test group. 

5. Testing and debugging are different activities, but debugging must be 

accommodated in any testing strategy. 

2.7.1 Unit Testing 

Unit testing focuses verification effort on the smallest unit of software design—the 

software component or module. Using the component-level design description as a 

guide, important control paths are tested to uncover errors within the boundary of 

the module. The relative complexity of tests and uncovered errors is limited by the 

constrained scope established for unit testing. The unit test is white-box oriented 

and the step can be conducted in parallel for multiple components. 

2.7.2 Integration Testing 

Integration testing is a systematic technique for constructing the program structure 

while at the same time conducting tests to uncover errors associated with interfacing. 



35 
 

  

The objective is to take unit tested components and build a program structure that 

has been dictated by design. 

2.7.3 User Acceptance Testing 

User Acceptance Testing (UAT) is a process to obtain confirmation by a Subject 

Matter Expert (SME), preferably the owner or client of the object under test, 

through trial or review, that the modification or addition meets mutually agreed-

upon requirements. In software development, UAT is one of the final stages of a 

project and often occurs before a client or customer accepts the new system. 

 

2.8 Theoretical Frameworks 

Based on the presented theory in the above section, a coherent model or formula 

which shows the relationships between variables should be formulated to seek for 

the solution. This model or formula should clarify how the design of solution may 

be constructed. 

2.8.1 Iteration Development 

Iterative development slices the deliverable business value (system functionality) 

into iterations. In each iteration a slice of functionality is delivered through cross-

discipline work, starting from the model/requirements through to the 

testing/deployment [20]. Iteration process purpose is to let developers evaluate the 

project result based on end users perception. After implement the project design to 

the real system, generally speaking there always be changing in development due to 

various factors such as business requirement or new technology implemented for 



36 
 

  

particular problems. The following figure describes how the iterative process takes 

place: 

 

Figure 12: Iterative process  

The figure describes a circular process from planning, requirements, analysis & 

design, and implementation. After testing the result of the project to the client, 

developers have the evaluation for the first iteration and so on until the project has 

all required functionalities. 

2.8.2 Agile Process 

According to Ivar Jacobson[19], agility is the key to make the project succeeded. An 

agile team is able to appropriately respond to changes. Software development is 

always about changes such as change because of new technology, changes to team 

members, and changes of all kinds that may have an impact on the product they 

built or the project that creates the product. The writer adapt agile concept while 

doing the project in order to meet the project requirement that keep changing to 

changes.




